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The lituarines A-C comprise an architecturally novel, biologi-  Scheme 2. Synthesis of C(20—26) Dithiane (—)-6

cally active family of marine natural productd«3; Figure 1) oo "8 Ponie e oo IR M
reported by Vidal and co-workers in 19%92Isolated from the sea B”O/\q 2. Hy, PAOH), HO/Q 2 20N \m
pen Lituaria australasaie endemic to the western region of the 08 (84%, 2 steps) ° ()-N-methylephedrine 10

. . N . (78%, 2 steps)
New Caledonian Lagoon near the Baie de St. Vincent, their (\
. . A . . 1.TBDPSClimid. ~ TBOPSQ HS(CHo);SH OTBOPS
structures, including the connectivities and relative stereochemis- e O\ Oipr __TMSOTH : S
tries, were assigned on the basis of multidimensional NMR 2’2;’3;%‘1,%%03”0/\/\(‘? ©2%)  HO %

1 OH

techniques® the absolute stereochemistry remains undefined. From ~ ®* (12 T rep
the biomedical perspective, the lituarines display significant cyto-
toxicities toward KB cells [I_) ICs0 = 5.5-7.5 nM; (2) ICs9 = 1. PMPCH(OMe),, PPTS QTBOPS 4&5 TBSCI, imid. QTBDPS <s\s
1-3 nM; (3): 1Cso = 7—9 nM]. Intrigued both by the architecture 2 DIBALH Ho (09%) TBSO '

(60-78%, 2 steps; borsm) 13 0PVB (6 OV

and the biological activities of the lituarines, we initiated a research )
program directed toward the total synthesis of the lituarffekhe

S hydrogenation, delivered alcoh®las a mixture (1:1) of diastereo-
Robertson laboratory has also reported progress in this*area. yerog (1:1)

mers. A two-step sequence involving oxidation of the primary
alcohol and diastereoselective addition of vinyl Zitecthe resulting
aldehyde provided allylic alcohdlO. Silyl protection followed by
hydroboration of the terminal olefin then yield&d, which in turn
was subjected to TMSOTf-mediated dithiane formation to furnish
dithiane ()-12in moderate overall yield for the three steps (45%).
The structure of{)-12was confirmed via X-ray crystallograpfy.
Treatment of diol {)-12 with p-methoxyphenyl dimethylacetal
resulted in a seven-membered PMP-acetal, which upon DIBALH
reduction led to{)-13. Protection of the terminal hydroxyl as the
Figure 1. Lituarines A-C. TBS ether completed construction of dithiare){6. The overall
yield for this 10-step sequence was 23%.

To maximize convergency, we envisioned a synthesis exploiting  Fragment union was achieved by lithiation of){6 in the
fragment union between dithiar® and advanced alkyl iodide  presence of HMPA (Scheme 3), followed by addition of alkyl iodide
(+)-7,23followed by macrolactonization and late stage introduction (+)-7 to furnish ()-14; the yield was 62%. With the core skeleton

of the C(26-33) (E,2)-dienamide side chain employirgs-vinyl of lituarines B and C in hand, we advanced to the macrocycle
stannané (Scheme 1). without major difficulty. Removal of the terminal TBS group,

. followed by an oxidation/Takai olefinati@rsequence, furnished
Scheme 1. Retrosynthetic Scheme vinyl iodide (+)-15. Release of the C(23) PMB group (DDQ) then

Scheme 3. Synthesis of C(1—24) Macrolactone (+)-17

° L7 i) t-BulLi, Et,0,
~ ;-80°C . HF+
Y (g MPRB0C 1. HEpyr
NH i) (+)-7 2. St03-pyr, DMSO, .
MO 3 (62%) 3. cfﬂ, crcl,
PMBO™ (74%, 3steps)  FMBO™
20 OPMB TBSO
SDS 22.0TBDPS
® (o]
6 TBSO OTBS
1.DDQ, pH 8 buffer worms ) SlaCettCOCH
2. TPAP, NMO ii) DMAP, PhMe
. . . 3. TMSOTT, 2,6-lutidine """
After development of a viable route to iodide-)-7,23 the 4. TBAF, 0°C 7%
. . . o o
structure was confirmed by X-ray analy8i©ur attention thus (51%. 4 steps)

turned toward the synthesis of dithiaBgScheme 2). Reduction
of known lactone {)-88 to the corresponding lactol, followed by |
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paved the way for oxidation to the ketone. Subsequent treatmentextensive 2D NMR studies (COSY, TOCSY, NOESY, HMBC,

with TMSOTTf resulted both in hydrolysis of theert-butyl ester

and protection of the C(4) hydroxyl as the TMS ether. A remarkably
selective removal of the TBDPS group (TBAF;0) in the presence

of the tertiary TMS and secondary TBS ethers was then achieved.
Macrolactonization employing the Yamaguchi conditfoeem-
pleted construction of the desired macrolactehg17in good yield

(ca. 77%).

Synthesis of the requisite vinyl stannar® for installation of
the C(26-33) (E,2)-dienamide side chain began with knowis-
2-iodomethylacrylate (Scheme #)a copper-mediated uniérwith
butyramide led to theis-enamidel8. Hydrolysis of the methyl
ester, followed by stereospecific iododecarboxylafibfyrnished
the desiredccis-iodoenamide20 as a single isomer. Surprisingly,
however, Pd-catalyzed stannylation2fresulted in isomerization
of the olefin to thetransisomer. As a result, we reversed the Stille
coupling partners for the side-chain attachment, making usis-of
iodoenamide20. This tactical revision required preparation of the
vinyl stannane from-)-17.

Scheme 4. Synthesis of C(28—33) Enamide Coupling Partner

o
O o} n-Pr o} n-Pr
Meo{_/, H;NJ\,,.p, Meo_<_,}N_< LiOH, MeCN/H,0 HOMN%
— Cul, 0 ©62%) 0
MeHN  NHMe 18 19
(42%)
n-Pr
(collidine),IPFg _{-Pr Me3SnSnMe; HN_<
—— I HN S e— |
=/ % Pd(PPhg), (¢}

(52%)
(33%)

20
Toward this end, removal of the dithiane it)c17 employing
the Stork protocdf was followed by stannylation of the C(27) vinyl
iodide moiety (Scheme 5). Stille union wittis-iodoenamide20
resulted in installation of the requisite C(283) (E,2)-dienamide.
Completion of the proposed structure of lituarine G-)}{3] was
then achieved by removal of the silicon protecting groups (TASF).

Scheme 5. Completion of Synthesis

1. PhI(OCOCF3),

2. Me;SnSnMe;,
Pd,dba,

3. Pdydbag, AsPhs
n-Pr
I, HN
\—/ _&
20
4. TASF
(38%, 4 steps)

With (+)-3 in hand, we quickly recognized that the spectral
properties did not match those of the natural lituaring"@lthough
to date we have been unable to obtain crystalst9f3 suitable
for X-ray crystallographic analysis, we do have convincing data to
support the structural assignment of)¢3. First, X-ray crystal-
lography confirmed the stereochemical assignments of the
C(1-19) tricyclic iodide &)-7,5 as well as the C(21) and C(24)
stereogenicity in{)-125 The geometry of theH,Z)-dienamide was
assigned byH NMR; specifically, the H28-H29 coupling constant
(J = 10 Hz) is consistent with & olefin, while the H26-H27
coupling constantX = 15 Hz) verifies anE olefin.'® For com-
parison, the C(2633) (E,E)-dienamide corresponding te-}-3 was
also constructedl.In the E,E congener, the H28H29 coupling
constant J = 14 Hz) was significantly larger, thereby supporting
the Z character of the C(2829) olefin in (+)-3. In addition,

HSQC) of (+)-3 both confirmed the connectivities and permitted
unambiguous assignment of all carbon resonances iF¢hEMR.
Finally, no epimerization was observed in any of the transformations
after construction of-{)-14.

In addition to the synthesis of the proposed structure for lituarine
C [(+)-3], we also completed the synthesis of the proposed structure
of lituarine B @) (Scheme 6). To this end, addition of acetic
anhydride to {)-3 led chemoselectively to acetylation of the C5
hydroxyl to provide ¢)-2. As with (+)-3 and lituarine C, the
spectral properties of syntheti¢-J-2 did not match those reported
for lituarine B.

Scheme 6. Synthesis of the Proposed Structure of Lituarine B

Ac,0, Et:N
(80%)

(+)-3

Taken together, the X-ray crystallographic data, in conjunction
with the 1D and 2D NMR studies, permit assignment of the
structures of syntheticK)-2 and (+)-3. Current work is directed
toward the determination of the structures of the natural lituarines
by synthesis of related diastereomers.
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